1932

Abstract

We discuss recent research on quantum transport in complex materials, from photosynthetic light-harvesting complexes to photonic circuits. We identify finite, disordered networks as the underlying backbone and as a versatile framework to gain insight into the specific potential of nontrivial quantum dynamical effects to characterize and control transport on complex structures. We discriminate authentic quantum properties from classical aspects of complexity and briefly address the impact of interactions, nonlinearities, and noise. We stress the relevance of what we call the nonasymptotic realm, physical situations in which neither the relevant time- and length-scales, the number of degrees of freedom, or constituents tend to very small or very large values, nor do global symmetries or disorder fully govern the dynamics. Although largely uncharted territory, we argue that novel, intriguing and nontrivial questions for experimental and theoretical work emerge, with the prospect of a unified understanding of complex quantum transport phenomena in diverse physical settings.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031115-011327
2016-03-10
2024-06-02
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/7/1/annurev-conmatphys-031115-011327.html?itemId=/content/journals/10.1146/annurev-conmatphys-031115-011327&mimeType=html&fmt=ahah

Literature Cited

  1. Imry Y. 1.  2009. Introduction to Mesoscopic Physics Oxford, UK: Oxford Univ. Press [Google Scholar]
  2. May V, Kühn O. 2.  2011. Charge and Energy Transfer Dynamics in Molecular Systems Weinheim, Ger: Wiley-VCH, 3rd ed.. [Google Scholar]
  3. Nitzan A. 3.  2006. Chemical Dynamics in Condensed Phases: Relaxation, Transfer and Reactions in Condensed Molecular Systems. Oxford Graduate Texts. Oxford, UK/New York: Oxford Univ. Press [Google Scholar]
  4. d'Arcy MB, Godun RM, Summy GS, Guarneri I, Wimberger S. 4.  et al. 2004. Phys. Rev. E 69:027201 [Google Scholar]
  5. Wimberger S, Guarneri I, Fishman S. 5.  2004. Phys. Rev. Lett. 92:084102 [Google Scholar]
  6. Johnson TH, Clark SR, Jaksch D. 6.  2014. EPJ Quantum Technol. 1:1–12 [Google Scholar]
  7. Schneider C, Porras D, Schaetz T. 7.  2012. Rep. Prog. Phys. 75:024401 [Google Scholar]
  8. Feynman R, Leighton R, Sands M. 8.  2013. The Feynman Lectures on Physics III Quantum Mechanics Pasadena, CA: Calif. Inst. Technol. [Google Scholar]
  9. Englert BG. 9.  2013. Eur. Phys. J. D 67:1–16 [Google Scholar]
  10. Albada MPV, Lagendijk A. 10.  1985. Phys. Rev. Lett. 55:2692–95 [Google Scholar]
  11. Anderson PW. 11.  1958. Phys. Rev. 109:1492–505 [Google Scholar]
  12. Casati G, Guarneri I, Shepelyansky D. 12.  1988. IEEE J. Quantum Electr. 24:1420–44 [Google Scholar]
  13. Mishchenko MI. 13.  1993. Ap. J. 411:351–61 [Google Scholar]
  14. Moore FL, Robinson JC, Bharucha C, Williams PE, Raizen MG. 14.  1994. Phys. Rev. Lett. 73:2974–77 [Google Scholar]
  15. Schelle A, Delande D, Buchleitner A. 15.  2009. Phys. Rev. Lett. 102:183001 [Google Scholar]
  16. Ringot J, Szriftgiser P, Garreau JC, Delande D. 16.  2000. Phys. Rev. Lett. 85:2741–44 [Google Scholar]
  17. Chabé J, Lemarié G, Grémaud B, Delande D, Szriftgiser P, Garreau JC. 17.  2008. Phys. Rev. Lett. 101:255702 [Google Scholar]
  18. Bayfield JE, Casati G, Guarneri I, Sokol DW. 18.  1989. Phys. Rev. Lett. 63:364–67 [Google Scholar]
  19. Sirko L, Bauch S, Hlushchuk Y, Koch PM, Blümel R. 19.  et al. 2000. Phys. Lett. A 266:331–35 [Google Scholar]
  20. Galvez EJ, Sauer BE, Moorman L, Koch PM, Richards D. 20.  1988. Phys. Rev. Lett. 61:2011–14 [Google Scholar]
  21. Jörder F, Zimmermann K, Rodriguez A, Buchleitner A. 21.  2014. Phys. Rev. Lett. 113:063004 [Google Scholar]
  22. Krug A, Buchleitner A. 22.  2005. Phys. Rev. A 72:061402 [Google Scholar]
  23. Maeda H, Gallagher TF. 23.  2004. Phys. Rev. Lett. 93:193002 [Google Scholar]
  24. Abrahams E, Anderson PW, Licciardello DC, Ramakrishnan TV. 24.  1979. Phys. Rev. Lett. 42:673–76 [Google Scholar]
  25. Hu H, Strybulevych A, Page JH, Skipetrov SE, van Tiggelen BA. 25.  2008. Nat. Phys. 4:945–48 [Google Scholar]
  26. Sperling T, Bührer W, Aegerter CM, Maret G. 26.  2013. Nat. Photon. 7:48–52 [Google Scholar]
  27. Wegner F. 27.  1979. Z. Phys. B 35:207–10 [Google Scholar]
  28. Roati G, D'Errico C, Fallani L, Fattori M, Fort C. 28.  et al. 2008. Nature 453:895–98 [Google Scholar]
  29. Fyodorov YV, Ossipov A, Rodriguez A. 29.  2009. J. Stat. Mech. 2009:L12001 [Google Scholar]
  30. Rodriguez A, Vasquez LJ, Slevin K, Römer RA. 30.  2010. Phys. Rev. Lett. 105:046403 [Google Scholar]
  31. Vollhardt D, Wölfle P. 31.  1980. Phys. Rev. B 22:4666–79 [Google Scholar]
  32. Billy J, Josse V, Zuo Z, Bernard A, Hambrecht B. 32.  et al. 2008. Nature 453:891–94 [Google Scholar]
  33. Wolf PE, Maret G. 33.  1985. Phys. Rev. Lett. 55:2696–99 [Google Scholar]
  34. Bergmann G. 34.  1984. Phys. Rep. 107:1–58 [Google Scholar]
  35. Kuga Y, Ishimaru A. 35.  1984. J. Opt. Soc. Am. A 1:831–35 [Google Scholar]
  36. Peruzzo A, Lobino M, Matthews JCF, Matsuda N, Politi A. 36.  et al. 2010. Science 329:1500–3 [Google Scholar]
  37. Tichy MC, Lim HT, Ra YS, Mintert F, Kim YH, Buchleitner A. 37.  2011. Phys. Rev. A 83:062111 [Google Scholar]
  38. Ra YS, Tichy MC, Lim HT, Kwon O, Mintert F. 38.  et al. 2013. PNAS 110:1227–31 [Google Scholar]
  39. Meinert F, Mark M, Kirilov E, Lauber K, Weinmann P. 39.  et al. 2014. Phys. Rev. Lett. 112:193003 [Google Scholar]
  40. Murmann S, Bergschneider A, Klinkhamer V, Zürn G, Lompe T, Jochim S. 40.  2015. Phys. Rev. Lett. 114:080402 [Google Scholar]
  41. Labeyrie G, de Tomasi F, Bernard JC, Müller C, Miniatura C, Kaiser R. 41.  1999. Phys. Rev. Lett. 83:5266 [Google Scholar]
  42. Modugno G. 42.  2010. Rep. Prog. Phys. 73:102401 [Google Scholar]
  43. Tichy MC, Tiersch M, de Melo F, Mintert F, Buchleitner A. 43.  2010. Phys. Rev. Lett. 104:220405 [Google Scholar]
  44. Shapiro B. 44.  2012. J. Phys. A: Math. Theor. 45:143001 [Google Scholar]
  45. Mosk A, Lagendijk A, Lerosey G, Fink M. 45.  2012. Nat. Photon. 6:283 [Google Scholar]
  46. Ahlbrecht A, Alberti A, Meschede D, Scholz V, Werner A, Werner R. 46.  2012. New J. Phys. 14:073050 [Google Scholar]
  47. Kolovsky AR, Buchleitner A. 47.  2003. Phys. Rev. E 68:056213 [Google Scholar]
  48. Ponomarev AV, Madroñero J, Kolovsky AR, Buchleitner A. 48.  2006. Phys. Rev. Lett. 96:050404 [Google Scholar]
  49. Geiger T, Wellens T, Buchleitner A. 49.  2012. Phys. Rev. Lett. 109:030601 [Google Scholar]
  50. Spethmann N, Kindermann F, John S, Weber C, Meschede D, Widera A. 50.  2012. Phys. Rev. Lett. 109:235301 [Google Scholar]
  51. Nelson J. 51.  2003. The Physics of Solar Cells London/River Edge, NJ: Imp. Coll. Press [Google Scholar]
  52. 52.  M.-J. Giannoni, A. Voros JZJ 1991. Chaos and Quantum Physics. Les Houches Summer School of Theoretical Physics. Amsterdam: North-Holland [Google Scholar]
  53. Arndt M, Hornberger K. 53.  2014. Nat. Phys. 10:271–77 [Google Scholar]
  54. Kottos T, Smilansky U. 54.  1999. Ann. Phys. 274:76–124 [Google Scholar]
  55. Smilansky U. 55.  2007. J. Phys. A: Math. Theor. 40:F621 [Google Scholar]
  56. Mülken O, Blumen A. 56.  2011. Phys. Rep. 502:37–87 [Google Scholar]
  57. Venegas-Andraca SE. 57.  2012. Quantum Inf. Process. 11:1015–106 [Google Scholar]
  58. Scholak T, de Melo F, Wellens T, Mintert F, Buchleitner A. 58.  2011. Phys. Rev. E 83:021912 [Google Scholar]
  59. Hul O, Ławniczak M, Bauch S, Sawicki A, Kuś M, Sirko S. 59.  2012. Phys. Rev. Lett. 109:040402 [Google Scholar]
  60. Mostarda S, Levi F, Prada-Gracia D, Mintert F, Rao F. 60.  2013. Nat. Commun. 4:2296 [Google Scholar]
  61. Walschaers M, Mulet R, Wellens T, Buchleitner A. 61.  2015. Phys. Rev. E 91:042137 [Google Scholar]
  62. Barra F, Gaspard P. 62.  2001. Phys. Rev. E 65:016205 [Google Scholar]
  63. Fyodorov YV, Savin DV. 63.  2012. Phys. Rev. Lett. 108:184101 [Google Scholar]
  64. Gaspard P. 64.  2014. Scholarpedia 9:9806 [Google Scholar]
  65. Breuer HP, Petruccione F. 65.  2002. The Theory of Open Quantum Systems Oxford, UK/New York: Oxford Univ. Press [Google Scholar]
  66. Tichy MC. 66.  2014. J. Phys. B: At. Mol. Opt. Phys. 47:103001 [Google Scholar]
  67. Mandel O, Greiner M, Widera A, Rom T, Hänsch TW, Bloch I. 67.  2003. Phys. Rev. Lett. 91:010407 [Google Scholar]
  68. Jaksch D, Zoller P. 68.  2005. Ann. Phys. 315:52–79 [Google Scholar]
  69. Scholak T, Mintert F, Wellens T, Buchleitner A. 69.  2010. Semicond. Semimet. 83:1–38 [Google Scholar]
  70. Rodriguez A, Chakrabarti A, Römer RA. 70.  2012. Phys. Rev. B 86:085119 [Google Scholar]
  71. Plenio MB, Huelga SF. 71.  2008. New J. Phys. 10:113019 [Google Scholar]
  72. Mohseni M, Rebentrost P, Lloyd S, Aspuru-Guzik A. 72.  2008. J. Chem. Phys. 129:174106 [Google Scholar]
  73. Ishizaki A, Fleming GR. 73.  2009. PNAS 106:17255–60 [Google Scholar]
  74. Johnson MW, Amin MHS, Gildert S, Lanting T, Hamze F. 74.  et al. 2011. Nature 473:194–98 [Google Scholar]
  75. Crespi A, Osellame R, Ramponi R, Brod DJ, Galvão EF. 75.  et al. 2013. Nat. Photon. 7:545–49 [Google Scholar]
  76. Metcalf BJ, Thomas-Peter N, Spring JB, Kundys D, Broome MA. 76.  et al. 2013. Nat. Commun. 4:1356 [Google Scholar]
  77. Günter G, Schempp H, Robert-de-Saint-Vincent M. 77.  Gavryusev V, Helmrich S et al. 2013. Science 342:954–56 [Google Scholar]
  78. Scholak T, Wellens T, Buchleitner A. 78.  2014. Phys. Rev. A 90:063415 [Google Scholar]
  79. Scholes GD, Mirkovic T, Turner DB, Fassioli F, Buchleitner A. 79.  2012. Energy Environ. Sci. 5:9374–93 [Google Scholar]
  80. Ishizaki A, Fleming GR. 80.  2012. Annu. Rev. Condens. Matter Phys. 3:333–61 [Google Scholar]
  81. Falke SM, Rozzi CA, Brida D, Maiuri M, Amato M. 81.  et al. 2014. Science 344:1001–5 [Google Scholar]
  82. Tamura H, Burghardt I. 82.  2013. J. Am. Chem. Soc. 135:16364–67 [Google Scholar]
  83. Amerongen Hv, Valkunas L, Grondelle Rv. 83.  2000. Photosynthetic Excitons Singapore: World Sci. [Google Scholar]
  84. Bardeen CJ. 84.  2014. Annu. Rev. Phys. Chem. 65:127–48 [Google Scholar]
  85. Blankenship RE. 85.  2002. Molecular Mechanisms of Photosynthesis Oxford, UK/Malden, MA: Blackwell Sci. [Google Scholar]
  86. Krüger TPJ, Wientjes E, Croce R, Grondelle Rv. 86.  2011. PNAS 108:13516–21 [Google Scholar]
  87. Mukamel S. 87.  2009. Principles of Nonlinear Optical Spectroscopy. No. 6 in Oxford Series in Optical and Imaging Sciences. New York: Oxford Univ. Press [Google Scholar]
  88. Winklhofer M, Dylda E, Thalau P, Wiltschko W, Wiltschko R. 88.  2013. Proc. R. Soc. B 280:20130853 [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-031115-011327
Loading
/content/journals/10.1146/annurev-conmatphys-031115-011327
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error